
Vim plugin index documentation
Release 0.0.1

Nikolay Pavlov

Sep 24, 2017

Contents

1 Projects that are part of the Vim plugin index 3

2 Database directory structure 5

3 Plugin-info file 9

4 Contributing to this database 13
4.1 Adding information about a new plugin . 13
4.2 Adding deprecation warning . 14
4.3 Adding information about a fork . 14

i

ii

Vim plugin index documentation, Release 0.0.1

Contents:

Contents 1

Vim plugin index documentation, Release 0.0.1

2 Contents

CHAPTER 1

Projects that are part of the Vim plugin index

Vim plugin index Database in format described by this documentation.

Vim-pi legacy plugin index Database in old format. Should not be used and will eventually be removed.

Vim-pi documentation Vim plugin index documentation. Contains sources for the documentation you are currently
viewing.

Vim-pi descriptions Database containing plugin descriptions. Feel free to use it to construct search indexes or do
some research.

Vim-pi tools Tools used by developers. Some notes about this repository:

• Backward or forward compatibility between tools is not guaranteed.

• There is no official documentation for these tools.

• These tools are used to build Vim plugin index database and/or manipulate it.

Vim-pi private data Database containing data used by vim-pi developer tools. Format or existence of particular data
is not guaranteed. You need to use up-to-date developer tools with up-to-date private data: compatibility is not
guranteed as well.

3

https://bitbucket.org/vimcommunity/vim-pi
https://bitbucket.org/vimcommunity/vim-pi-legacy
https://bitbucket.org/vimcommunity/vim-pi-documentation
https://bitbucket.org/vimcommunity/vim-pi-descriptions
https://bitbucket.org/vimcommunity/_vim-pi-tools
https://bitbucket.org/vimcommunity/_vim-pi-data

Vim plugin index documentation, Release 0.0.1

4 Chapter 1. Projects that are part of the Vim plugin index

CHAPTER 2

Database directory structure

Note: Example JSON code blocks show generic JSON structure, not the exact layout of data physically written to the
file. E.g. plugin managers must not rely on vim-pi (not) writing the whole file as one long line.

/ Root of the database. Contains all of the following data.

/index.json Index of all plugins. Is a JSON file containing mapping with the following format:

{
"{name}": {

"last-update-time": "{update-time}",
"last-release-time": "{release-time}",
"description": "{description}",
"author": "{author}",
"vim-script-nr": {scriptnr},
"alternate-names": ["{name1}", "{name2}", ..., "{nameN}"],
"deprecated": {deprecated}

},
...

}

Fields:

{name} Exactly the same name as plugin directory name.

{update-time} Field {update-time} is written in a very strict variant of ISO-8601 (described below), so
unless you are preparing for 101 century you can safely use simple string comparison. This field should
be checked by plugin managers when they decide whether they need to update information about plugin.

Required.

{release-time} Like above, but is only altered when either new release, new fork or new development
version were added. Is not altered when description or hooks were changed or when one of the old versions
was removed.

Required.

5

Vim plugin index documentation, Release 0.0.1

Note: Vim-PI is not tracking development version updates if they use some of the version control systems.
Plugin managers are supposed to simply rely on used VCS to update such plugins.

{author} Author name. Optional.

{description} Latest description of the plugin. May be used for searches. Optional.

{scriptnr} A script number on www.vim.org. Optional.

{name1} ... {nameN} Alternate names may be not unique and are supposed to represent alternative variants
of writing plugin: e.g. “VAM” for “vim-addon-manager”. Optional. Plugin managers are supposed to
prefer these names over fuzzy matches.

Note: Two plugins may share the same alternate name.

{deprecated} true if plugin was deprecated. If it was not this field is absent, but may be set to false as
well. Optional. Plugin managers are supposed to remove deprecated plugins from search and completion
unless configured otherwise.

Note: For forward compatibility plugin managers must not rely on absence of keys that are not described here.

Note: ISO-8601 is very permissive. For index.json there are additional restrictions:

• UTC time zone indicated by Z at the end,

• nanoseconds; uses comma as decimal fraction separator,

• hyphenminuses (ASCII dashes) as year, month and day separator,

• no week dates,

• T as date/time separator,

• : as hour/minute/second separator.

In this format UNIX Epoch will look like this:

1970-01-01T00:00:00,000000000Z

/update-times.dat Smaller version of the index of all plugins: contains only plugin name – last update time –
last time of a new release 3-tuples in the format:

{name1}\0{last-update-time1}\0{last-release-time1}\n
...
{nameN}\0{last-update-timeN}\0{last-release-timeN}\n

, trailing newline is always present and all *-time fields have all separators stripped and are missing timezone:
UNIX Epoch will look like 19700101000000000000000 so plugin managers still may use string compar-
ison, but also numeric comparison (if they are written in a language with big integer support and want to waste
time on creating it).

It is intended that plugin managers use this file only to check for available updates.

/plugins/ Directory, containing plugin directories.

/plugins/name/ Directory with files specific to the given plugin.

6 Chapter 2. Database directory structure

Vim plugin index documentation, Release 0.0.1

/plugins/name/MANIFEST.json List of the files in this directory. List format:

{
"{filename1}": {"size": {size1}, "sha256": "{sha256_1}"},
"{filename2}": {"size": {size2}, "sha256": "{sha256_2}"},
...
"{filenameN}": {"size": {sizeN}, "sha256": "{sha256_N}"}

}

. Each filename is a path relative to /plugins/name directory.

Note: For forward compatibility plugin managers must not rely on presence of sha256 key (it may be replaced
with other hash(es) in the future, though it is more likely that they will be just added) or absence of any keys
that are not described here.

/plugins/name/plugin-info.json Top-level plugin-info file. Format is described in plugin-info file docu-
mentation.

Note: This file must not contain repository and version keys. These key must be defined in plugin-info file
inside release or development directory.

/plugins/name/hooks/ Contains hoodospel hook files used by plugin-info file.

/plugins/name/hooks/hook.hds Contains one specific hook. You should replace hook with one of the stage
names identical to one of the hook keys from plugin-info file. If hook should be applied at both post-install
and post-update stages it should be named post. If identical hook should be run at two or more other stages
then you should deduce a name on your own and raise an issue at vim-pi documentation issue tracker describing
this name and the case in which you need identical names for both stages.

All post* and pre* are reserved for hooks that are described directly in relevant keys in a plugin-info file.
Names not starting with post or pre may be used for code that is common to more then one hook.

/plugins/name/releases/ Directory that contains version-specific information for all plugin versions.

/plugins/name/releases/version/ Directory that contains version-specific information for one plugin
version. Plugin version must not contain @ character: it is reserved for version variants (e.g. 0.1 con-
tains description for installing plugin version 0.1 from archive and 0.1@git uses git) and forks (e.g.
marcweber@0.0 for version 0.0 of a fork created by Marc Weber).

/plugins/name/releases/version/plugin-info.json Main plugin-info file. Format of this file is
described in plugin-info file documentation. Is merged with top-level plugin-info file.

/plugins/name/releases/version/hooks/ Same as top-level hooks directory, but contain hooks specific
to given plugin version. These hooks will be used first.

/plugins/name/development/ Directory that contains all variants of development installations.

/plugins/name/development/variant/ Directory that contains version-specific information for develop-
ment plugin version. Directory structure is the same as for release directory. variant should be either a
name of the author of the fork, preceded with fork@, an upstream mirror that uses different VCS in a format
mirror@vcs where vcs must be one of the repository types or just upstream.

Note: Forks must not be chosen by plugin managers by default.

/plugins/name/files/ Miscellaneous files that are not any of the above files.

7

http://hoodospel.readthedocs.org/en/latest/
https://bitbucket.org/vimcommunity/vim-pi-documentation/issues/new

Vim plugin index documentation, Release 0.0.1

8 Chapter 2. Database directory structure

CHAPTER 3

Plugin-info file

Plugin-info file is a regular JSON file that contains JSON dictionary with the following keys:

Required keys:

repository Repository description, must not be present in top-level plugin-info file. Contains a dictionary with
the following keys:

type Required. Must contain one of the following strings:

archive Designates that this dictionary describes an archive downloaded from given URL.

file Designates that this dictionary describes a plain .vim file.

hg, git, svn, bzr, darcs Designates that this dictionary describes a repository controlled by the given
version control system.

any name starting with _ Reserved for plugin managers. Must not be present in the database.

url Required. For archive and file repository types it determines URL of the file to download, for various
VCS repository types it determines location from where it should clone the repository.

Note: Plugin managers are supposed to use this URL when updating.

revision Optional if repository type is one of VCS types, must not be present otherwise. Determines revision
that should be checked out, may be a branch name.

vim-directory Describes directory where plugin .vim file(s) should be moved if repository type happens
to be file.

unpack-sequence Required if repository type happens to be archive, optional if it happens to be file
and must be absent in other cases. Contains a list of strings which determine the unpack sequence that
should be performed by a plugin manager to unpack downloaded archive. If type is file then this list
must contain only stream compress formats. Known formats:

9

Vim plugin index documentation, Release 0.0.1

Format Description
gz, xz, lzma,
bz2

Stream compress formats: gzip, xz, lzma, bzip2.

tar Tape archive (tar) format.
zip Zip archive format.
rar RAR archive format.
cab CAB (CABinet) archive format.
arj ARJ archive format.
jar JAR (Java ARchive) archive format.
7z 7z archive format (should not be used for non-.7z archives supported by 7-zip, but

not listed here).
vmb Vimball archives.

file-name Required if repository type happens to be file, optional if it happens to be archive and must
be absent in other cases. Contains a string that is the name of the .vim file (when type is file) or
downloaded archive name (when type is archive) and must not be used for anything but determining
how to name file downloaded from the given URL.

Note: For archived files like pt.vim.gz (repository-type is file) the file-name key is pt.
vim.gz, not pt.vim. It is up to the plugin manager to determine what will the name of the file be after
unpacking.

strip-components Optional. Tells plugin manager to strip given number of top-level directories. Only
valid for repositories with type archive.

Note: Plugin managers must strip given number of path components when this key is present. They are
free to do automatic detection in case it is not present.

name String, name of the plugin. Value must match plugin directory name.

version String. In database it is required to be the same as {version} component of release directory and be absent
in any other plugin-info files.

Optional keys:

dependencies Dictionary, description of the dependencies. Must be present in the form dependency_name :
dependency_description: dependency_name is a dictionary key, dependency_description
is a dictionary. The latter may contain keys listed below:

version A single string describing allowed dependency versions. String must look like the following:

version :: top_constraints " " version_base
top_constraints :: [<=>]? "=" | [<>]
version_base :: version_component ("." version_component)*
version_component :: same_as_current | number | any
same_as_current :: "~"
number :: [^.~*] [^.]*
any :: "*"

Absense of this key works like if == * was specified.

Description of the format string:

0. Versions are supposed to have format like 1.2.3.4. Semantic versioning is preferred, but not forced.
In place of numbers any alphanumeric sequence may appear. When comparing versions only the first
numeric part at the start of each version component will be taken into account: alpha1 equals zero

10 Chapter 3. Plugin-info file

Vim plugin index documentation, Release 0.0.1

because a is not a digit, components 123rc and 123rc are considered equal, as well as 1rc2 and
1rc3.

When parsing version any non-alpha-numeric character that is not dot or ~ is stripped out, producing
new component: 2014-05-16 is converted into 2014.05.16. This applies both to version
key in dependencies dictionary and version key of the actual dependency. Using identical to
constraint disables this.

1. top_constraints specify which versions should be considered to be allowed. Possible variants:
< (lesser then), > (greater then), <= (lesser then or equal to), >= (greater then or equal to), = (equal
to), == (identical to).

Checked version is considered matched if its first differing component matches given constraint. Miss-
ing component is strictly lesser then any other value.

When using “indentical to” constraint corresponding string is always treated as a single component
and is matched literally unless it is equal to same_as_current or any.

2. same_as_current is substituted with value of the component in the same position of the version
of the package for which dependencies are defined. any means that version component may have any
value, and all of the following components may have any value, including missing. It thus must be
the last atom.

All lesser and greater constraint variants automatically receive any as the last component, no matter
whether or not it is specified.

“Identical to” top constraint allows either a single component same_as_current or a random
string.

Examples (assuming version key is 2.6.10):

Version definition Matched examples Not matched examples
>= 1.2 1.2, 1.2.5 1.1, 0.1
> 1.2 1.2rc1, 1.3 1.1, 1.2
= 1.2 1.2, 1foo2 1.2.1, 1.1, 1.3
= 1.2.* 1.2, 1.2.3 1.3, 1.1, 1
= ~.~.* 2.6, 2.6.5 2.5, 2
== ~ 2.6.10 2f6f10, 2.6.10.1
== 1alpha2 1alpha2 1.2, 1.0.2, 1foo2
== * 1, alpha, {no examples}
= * 1.0, 1, 1.2.3 {no examples}
< 1.2 1.0, 1 1.2, 2.0
<= 1.2 1.2, 1.0, 1 1.2.3, 2.5

optional Boolean. Determines whether described dependency is optional. Defaults to false.

build Boolean. Determines whether this is build-time dependency. Defaults to true.

homepage String, the home page of the plugin.

vim-script-nr Number, script number on vim.org website.

author String. Describes author of the plugin in format name <email>.

maintainer String. Describes maintainer of the plugin in format name <email>.

description String. Plugin description.

deprecation-warning String, deprecation warning message that should be displayed when installing the plugin.

Note: Plugin managers must display this message when they attempt attended installation of plugins with this
key in plugin-info file. They may also display this message when attempting attended update and it appears that

11

http://www.vim.org

Vim plugin index documentation, Release 0.0.1

this key is present in new plugin-info, but did not exist in the old one.

replacements List of strings, plugins that are suggested to replace deprecated plugin. Must not be present if there
is no deprecation-warning key. Contributors must not list plugin competitors here unless plugin was deprecated
for one of the listed reasons.

pre-install, post-install, pre-update, post-update Tells plugin manager what to run in different
cases: *-install hooks are run before or after plugin installation, *-update hooks are run before or after
update. Value is a plain string that must correspond to one of the file names in hooks directory without an
extension. Note that hook may also be located in release-specific hooks directory.

alternate-names List of strings: alternate names of the plugin. Used for populating alternate-names key in the
index.json file.

12 Chapter 3. Plugin-info file

CHAPTER 4

Contributing to this database

Contributions are accepted in a form of bitbucket pull requests. There exist the following types of contribution:

Note: One pull request must contain only one contribution type. It may contain more then one contribution with the
given type though.

Note: There must be no merge commits in the pull request.

Adding information about a new plugin

To add information about a new plugin one should create a new plugin directory tree in /plugins/ directory without
MANIFEST.json file (it will be generated later). Files this tree must contain (relative to plugin directory):

Top level plugin info file Plugin info file. As mentioned in this file documentation it must not contain repository key.

Plugin info file in one of the releases directories Plugin info file inside release or development subdirectory. Must
contain at least repository key.

Tree also may contain hooks and files used by hooks (in files subdirectory).

Plugin name must consist of latin letters, digits, dashes and underscores. Only ASCII variants of these symbols are
allowed. There must not be two consequent dashes or underscores (e.g. substrings -- and __ are not allowed, but
- is). It also must be unique.

Note: Contributors should not modify index.json file or update times file. Just like MANIFEST they will be generated
later.

13

Vim plugin index documentation, Release 0.0.1

Adding deprecation warning

Deprecation warning is added to the top-level plugin info file to the key deprecation-warning. Contributor may also
add replacements key. First key must contain a reason for deprecating this plugin and may also contain suggestions
for the user about replacing this plugin.

Valid reasons for deprecation:

• Plugin author explicitly described his plugin as deprecated. In this case deprecation warning should be added
even if there are no alternatives.

• Features of this plugin were included in one of its dependencies.

• Plugin depends on missing or deprecated plugins.

• Plugin was last updated at least six months ago, contains known bugs and there is a replacement for it. One may
consider contributing information about a fork instead.

Adding information about a fork

TODO

14 Chapter 4. Contributing to this database

	Projects that are part of the Vim plugin index
	Database directory structure
	Plugin-info file
	Contributing to this database
	Adding information about a new plugin
	Adding deprecation warning
	Adding information about a fork

